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Donald C. Ferencz*
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Larry A. Viterna

National Aeronautics and Space Administration
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Cleveland, Ohio 44135

S_mrr]ary

ALPS is a computer program which can be used to solve general linear program

(optimization) problems. ALPS was designed for those who have minimal linear

programming (LP) knowledge and features a menu-driven scheme to guide the user

through the process of creating and solving LP formulations. Once created, the problems

can be edited and stored in standard DOS ASCII files, to provide portability to various word

processors or even other linear programming packages. Unlike many math-oriented LP

solvers, ALPS contains an LP "parser" that will read through the LP formulation and report

several types of errors to the user. ALPS provides a large amount of solution data which is

often useful in problem solving.

In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary

type problems. Pure linear programs are solved with the revised simplex method. Integer or

mixed integer programs are solved initially with the revised simplex, and then completed

using the branch-and-bound technique. Binary programs are solved with the method of

implicit enumeration.

This manual describes how to use ALPS to create, edit, and solve linear programming

problems. Instructions for installing ALPS on a PC compatible computer are included in the

appendices along with a general introduction to linear programming. A programmers guide

is also included for assistance in modifying and maintaining the program.

*Summer Student Intern at NASA Lewis Research Center.
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1.0. Introduction

ALPS is, as the name describes, a linear program (LP) solver. This manual describes how to

use ALPS to create, edit, and solve LP problems.

ALPS features a menu-driven scheme to guide the user through the process of creating and

solving LP formulations. Once created, the problems can be edited and stored in standard

DOS ASCII files, to provide portability to various word processors or even other linear

programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP

"parser" that will read through the LP formulation and report several types of errors to the

user. ALPS provides a large amount solution data that is often useful in problem solving.

In addition to standard LP's, ALPS can solve for integer, mixed integer and binary type

problems. Pure linear programs are solved with the revised simplex method. Integer or

mixed integer programs are solved initially with the revised simplex, and then completed

using the branch-and-bound technique. Binary programs are solved with the method of

implicit enumeration.

ALPS was written for a PC compatible computer. Appendix A contains information on

system requirements and installation instructions.

In general, ALPS was designed for those who have a minimum of knowledge in linear

programming. However, some familiarity with the "jargon" of optimization is assumed.

Appendix B contains a brief introduction to linear programming with several example

problems.

A programmers guide is included in Appendix C for assistance in modifying and

maintaining the program.



2.0. Problem Editing

There are two ways to enter a problem formulation into ALPS: through the built-in editor of

ALPS, or, by retrieving a formulation stored as an ASCII file. This section describes the

operation of the ALPS editor.

2.1. Invoking the Editor

Choosing option (E) Enter/Edit Formulation from the main menu will invoke the ALPS

problem editor. The text window covering most of the screen is used much like any other

editor to create a problem formulation. The cursor keys may be used to move around the

current edit window, and the LP equations/commands can be placed anywhere in the

window (subject to the rules of formulation, as described later).

2.2. Editor Key Functions

Note that the edit "window" covers only a portion of the entire problem formulation. The

text may be scrolled up, down, left, and right to display other parts Of the problem. Within

the editor, the following keys have special functions:

Key

Cursor Keys
Home
End

Page Up

Page Down

problem).

Ctrl-Page Up

Ctrl-Page Down
Ctri-Left

CIrI-Right
F1

F2

Otherwise,

F3

changes

F8

Shift-F8

Ctrl-End

Editor Function

The cursor keys function normally

Move the cursor to the beginning of the line.
Move the cursor to the end of the line.

Scroll up by one editing window (but not past the top of the problem

Scroll down by one editing window (but not past the bottom of the

Scroll up by one line.

Scroll down by one line.

Scroll the text window left by two columns.

Scroll the text window right by two columns.

Display the editor's built-in help screen

Check the problem formulation and exit if the problem is correct.

a pop-up window will describe the error (see "Formulation Errors" for more
information).

Abort the current formulation; that is, exit without saving changes. Any

made during the current edit WILL BE LOST.
Insert a blank line after the cursor.

Delete the entire line that the cursor is positioned on.

Delete all characters from the current cursor position to the end of the line.
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3.0. Problem Formulation

In order to correctly solve any linear program, ALPS requires that the formulation follow

certain rules. In general, the linear program must be expressed in "standard form." Other

restrictions apply, and are listed here.

3.1. Decision Variables

The decision variables used in the linear program must all begin with an alphabetic

character, and may contain any combination of alphanumeric characters and the underscore

("_"). ALPS only reads the first six characters of each variable name; be careful, since

"AIRFLOW_I" is actually the same as "AIRFLOW_2". Decision variables do not have to

be "declared"; they are implicit within the problem. Variables are case-sensitive (e.g.,

"Ab" is a different variable than "aB").

Special rules apply to variables beginning with "B" and 'T' (upper case only). Any name

beginning with 'T' is used to denote a variable that can only have an integer value in the

solution (for example, a variable representing the number of ships entering a port).

Likewise, any variable beginning with "B" represents a binary variable. A binary variable

is a special type of integer variable that can only take on the values "0" or "1". These

variables have special uses in linear programming. See Appendix B for more information

on binary/integer programming.

The following are valid decision variable names in ALPS: X1, FLOW_l, Xj23Q2, A

The following are NOT valid decision variable names: lx2, _apples, %Y7, AND*or

3.2. Objective Function

ALPS requires that the problem formulation begin with the objective function. Other than

comment lines beginning with "!", the first line of the LP must begin with "MAXIMIZE" or

"MINIMIZE" (or "MAX" and "MIN", for short). Following this is the sum of the decision

variables, preceded by their coefficients (costs). The objective function may cover several

lines.

At least one, but not all, decision variables must appear in the objective function. ALPS will

assume that any decision variable not appearing in the objective has a zero cost. However,

variables may NOT appear in the objective function if they do not appear in the constraint

set, as this would lead an "unrestricted" variable.

The following is an example of a valid objective function:

MAX X1 + 2X2- X3 + 12X4



NotethatALPSdoesnotallowconstantsin theobjectivefunctionequation,astheywill not
affect thesolution.

3.3. Constraint Set

Following the objective function is the constraint set. The set of constraints for the linear

program must begin with the statement "SUCH THAT" (or abbreviated "S.T.") on a

separate line. ALPS allows constraints to appear on multiple lines, but only one constraint

(or the beginning of one constraint) must appear on any one line.

The constraints must be expressed in the "standard" form of linear programming; that is, all

variables must be on the left-hand side of the equation, with only a constant appearing on

the fight hand side. Thus the inequality

X1 + X2 + X2 < Y1 + Y2 must be expressed within ALPS as

X1 + X2 + X3- Y1 - Y2 < 0.

In linear programming, only "non-strict" inequalities ("<" and ">") are actually valid.

ALPS allows input of both strict ("<" and ">") and non-strict inequalities; but in all cases

the non-strict inequalities are assumed. Of course, equality constraints are also valid.

Standard form of linear programs also requires that all fight-hand side constants be positive.

If any fight-hand side is negative, however, ALPS will automatically multiply through by

-1 internally to convert the equation to standard form.

Each constraint may be given a "name." This name is entered the same as a comment and is

presented in the solution output. To name a constraint, place a comment character "!" after

the right-hand side expression, followed by the constraint name:

COST1 + COST2 + COST3 < 100 ! Fiscal_Budget

3.4. Miscellaneous

Numerical constants and coefficients must be expressed in simple decimal form (e.g.,

"12.329"). Exponential notation is not permitted. If a problem contains large numbers, it

should be rescaled (e.g., use "millions of gallons" instead of "gallons") to maintain

significant accuracy in the problem.

3.5. Formulation Errors

Within the editor, the formulation can be checked with the 'F2' key. Alternately, if the

formulation is loaded from a disk file, ALPS will automatically perform syntax/error

4



checking. If there is a formulationerror, ALPS will presentone of the following error
messages,alongwith thenumberof thelinewheretheerrorwasfound.Listedbelowarethe
possibleerrors,reasonsfor the error,andsuggestedsolutions.

Illegal Character(s): ALPShasdetectedacharacterthathasnoplacein theLPformulation
(suchas"*" or "$") andis not within a comment. Checkfor typosor invalid decision
variablenames.

Missing or Bad Variable Name: A variable was expected, but none was found (such as "X

+ < 7'3. This may also be caused by a variable name beginning with a numeric digit.

Change the variable name.

Missing Constraint Sign: A constraint was included that has no (valid) constraint sign

("<", ">", "=", "_", or "<"). Check to make sure all constraints are valid.

Illegal Right-Hand Side: The right-hand side of a constraint was bad; either it contains a

variable ("X < Y") or an ill-formed constant ("X < 37'). Make sure all right-hand sides are

pure constants.

Invalid Coefficient: The coefficient of a decision variable was found to be invalid. Check

for typos.

No Constraints!: The current linear program appears to have no constraints. Check to

make sure the keywords "SUCH THAT" appear before the constraint set.

Error in Objective Function: Some syntax error was found in the objective function, such

as a misspelling of "MAX", etc. Check the entire objective function carefully.

Bad Variable in Objective Function: A variable was found in the objective function that

does not appear in the constraint set. This "unrestricted" variable would cause an

unbounded solution. Check for misspellings in the objective function; make sure the

problem formulation is correct (i.e., has enough constraints).

Variable Appears Twice: ALPS does not allow a variable to be used twice within one

constraint. Normally, this means there is a typo in the offending constraint. Otherwise,

"condense" the two coefficients into a single one by adding them.

Sometimes, particularly in the case of constraints that cover multiple lines, ALPS will

report a line number that is "close-but-not-quite" where the error is located. Check around

the area where ALPS reports the error and it will most likely be found.



4.0 Solution

Once a problem formulation has correctly been entered into ALPS, the solution process may

begin. Choosing (S) Solution from the main menu brings up the solution menu.

4.1. Solving the Problem

Choosing (S) Solve Problem from the solution menu will begin the solution process.

Although there are several solution procedures for the several types of linear programs that

ALPS will solve, they are chosen automatically. A status line in the middle of the screen

describes which solution technique is taking place:

Solving Linear Program: In this case, the problem is purely a linear program and ALPS

has only to perform the "simplex method" to solve it. ALPS display the current iteration

count, as well as the current "entering" and "leaving" variable in the simplex basis. These

are useful for determining whether the LP is "cycling"-- see the section on "Errors in the

LP Solution" for more information.

Solving Initial LP: This is the first phase of solving an integer program, and the display is

the same as noted above. Once the "initial" LP is solved, ALPS will present the display for

the "branch-and-bound" procedure, described below.

Performing Branch and Bound: ALPS is solving the second phase of an integer program.

Generally, this takes quite a bit of time. The status displays the "depth" of the solution as

well as the number of "boxes" generated; this is useful for tracking the solution process.

Performing Implicit Enumeration: If the problem consists purely of 0-1 integer (binary)

variables, ALPS uses a much faster and more efficient technique to solve this special type of

problem. The status will generally change very quickly.

If one or more solutions were found, ALPS will display a positive status (Unique Optimum

Found or Multiple Optima Found); otherwise, an error status will be displayed.

4.2. Displaying the Solution

Once the LP has been solved, there is a multitude of information to examine. From the

solution menu, choosing (D) Display Solution will present the main solution data. The top

of this screen displays the heading Solution X of Y; if more than one solution was found, the

keys F1 and F2 can be used to cycle through each solution in turn.

The output of the solution is displayed in a "scrolling output screen." The information can

be paged up and down with the Page Up and Page Down keys or line-by-line using the up

and down arrow keys.



Eachsolutionhasthe headingLP Solvedwith OptimalValueof XXX, denotingthefinal
value(maximumor minimum,dependingon theproblemformulation)that wasfound for
thesolution. Belowthis appearstheoptimalsolution:VariableName,OptimalValue,and
ReducedCostsfor eachvariablein the formulation. For more informationon Reduced

CostsseeAppendixB.

ALPS alsolists informationabouteachrow in theconstraintset. Notethat theConstraint
Row is not theabsoluterow numberof theproblemformulation,but theordinalnumberof
theconstraintwithin theconstraintset. If theconstrainthasaName,this isdisplayedalso.
If the constraintwasan inequality,the Slackor Surplus(the amountthe left-hand side
differs from theright-hand side,for eacha "<" or ">" constraint,respectively)is shown.
Finally, the Dual Cost (sometimesknown asthe "shadowcost") for eachconstraintis
displayed. (More informationon "dual costs"is availablein AppendixB, aswell asany
linearprogrammingtext that considers"duality.")

4.3. Range Analysis

ALPS also produces a list of"optimal ranges" for each of the objective function coefficients

and the right-hand sides of the constraints. These are the ranges in which the coefficients or

right-hand side values can change without affecting the final solution (that is, the optimal

value of the decision variables). Choose (R) Range Analysis from the solution menu to view

all of these ranges. Like the solution display, the data is presented in a scrolling viewer.

Alternate ranges (related to any alternate solutions that have been viewed above) can be

toggled with F1/F2.

Please note that ranges are not available for the pure binary program; the solution technique

does not provide this information. Also, the range information for any mixed-integer or

integer program (with any 'T' variables) should be taken lightly; this type of solution is not

completely determined by the objective function coefficients alone. For strictly linear

programs (with no 'T' or "B" variables), however, the range analysis (known as

"parametric" or "sensitivity" analysis) can be a very powerful tool for resolving a linear

program without having to rerun ALPS.

4.4. Solution Report

A complete solution report, with optimal values, shadow costs, slacks and surpluses, and

optimal ranges can be created by choosing (P) Print Solution Report from the solution

menu. This report can be directed to any DOS file, including some sort of list device (such

as "PRN" or"LPTI"). The report contains a complete listing of the problem formulation, as

well as the information described in each of the above sections, for each optimal solution.

Q
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5.0. File Operations

As mentioned before, ALPS has facilities for storing and retrieving linear programs as

ASCII files. Choosing (F) File Functions from the main menu will display the ALPS file

screen.

5.1. Saving Files

Any current ALPS formulation can be saved to a DOS file assuming the formulation has

been checked for proper syntax. Selection (W) Write File will prompt for a DOS filename.

Simply enter a name and ALPS will store the text of the problem formulation in standard

ASCII format. This is useful for printing the formulation, or even incorporating the

problem into a word processor.

Note that ALPS does not store any solution information along with the problem, so that if

the file is re-loaded into ALPS it will have to be re-solved.

5.2. Reading Files

ALPS can read a previously stored file with the (R) Read File command. Enter the filename

when prompted, as above. This file can be one stored by ALPS in an earlier session, or an

ASCII file created with a word processor. DO NOT try to read a formatted word processor

file; the control codes will most likely confuse ALPS into a crash. Instead, make sure the

word processor has the capability to store files in plain ASCII format.

Once the file has been loaded, ALPS will immediately check it for proper syntax. For large

problems, this may take a while; ALPS displays "Checking Problem, Please Wait..." while

this is taking place. If there are any errors in the formulation, ALPS will enter into the edit

screen to allow for correction.



Appendix A: Computer Requirements and Installation

ALPS is provided on 5.25 inch. high density floppy diskettes containing the following two

files:

alps.exe

alps.atf

There are two possible ways of running ALPS, depending on which version of the program

is being used.

ALPS can exist as a stand-alone program from DOS. In this "packed" version of ALPS,

only about 270K of memory is available.

If ALPS is contained as an IBM APL2/PC workspace (as from the original development),

the workspace must be loaded from transfer format. The advantage to using ALPS from

within the APL2 environment is that the program can make full use of any installed

extended memory.

Stand-alone EXE Version

For this version, ALPS requires an IBM PC or compatible with at least 640 K of memory

and DOS 3.1 or higher.

To install ALPS, simply create a directory and copy the alps.exe file to it.

To run ALPS, change to the directory containing the alps.exe file and type "ALPS" at the

DOS prompt.

APL2/PC Workspace Version

For this version, ALPS requires the IBM APL2 programming language on a 80386 or 80486

based microcomputer with a 80387 math coprocessor, at least 2 megabytes of extended

memory, and DOS 3.3 or higher. APL2 for the PC is available from:

IBM Direct

Phone: 800-IBM-2468

Part Number 6242936

To install, copy the ALPS workspace, "alps.atf", to the system APL2 directory. Next, enter

the APL2 system. It should be noted that ALPS requires three auxiliary processors ap2,

ap124, and ap210. An example invocation would be:



ap1232ap2ap124ap210

ALPScannow be importedfrom its transfer-formatfile with thecommand:

)IN ALPS

Fromhere,theusermayexamineormodify anyof theALPScode.To beginexecutionof
ALPS, themain function is calledby typing:

ALPS

ALPS canalsobestoredin workspaceform with thecommand:

)SAVE ALPS

All furtheruseof ALPS cannow usethecommand:

)LOAD ALPS

10



Appendix B: An Introduction to Linear Programming

Introduction

Linear programming represents a small part of the more general field of mathematical

optimization. Optimization can be loosely defined as the practice of searching a set of

alternatives for the best candidate. Often, the number of alternatives is numerous, even

infinite. Optimization provides a way to find the "best" option without having to examine

each and every alternative.

In optimization practice, the set of alternatives is expressed mathematically. Obviously, a

linear program implies that the mathematical interpretation of the system to be optimized be

expressed in a simple, linear fashion. With that in mind, the scope of the linear program is

quite clear. (Many methods of representing and solving general, nonlinear problems exist,

but are not considered here).

The term "programming" suggests a method involved with this linear model; indeed, the

technique of linear programming gives specific steps to translate a system (physical or

otherwise) into a mathematical optimization model that can then be solved. Although linear

programming may also consider the actual techniques used to solve the problem, this

discussion will only briefly cover steps used to find a solution, as well as the interpretation

of that solution.

The Components of a Linear Program

A linear program is made up of three basic parts, all of which must be clearly identified (or

chosen) before the model can be composed: the decision variables, constraint set, and

objective function.

Decision Variables

The decision variables of a linear program imply a "choice" (or decision) to be made within

the solution of the problem. Each decision variable can be thought of as a "degree of

freedom" of the solution. Decision variables can represent anything, from physical

dimensions to prices to shipping quantities. Keep in mind, though, that often a judicious

choice of decision variables will make the resulting linear program smaller (and thus more

efficient) than another choice.

In most cases the choice of decision variables lends itself well to the problem. However, to

ensure that the rest of the problem can be formulated in a straightforward manner, perform a

quick run-through of the rest of the problem formulation before making a final choice of

decision variables.

11



ConstraintSet

In most problems, particularly those involving physical systems, a set of constraints on the

values of the decision variables is imposed. These constraints are expressed as any linear

combination of the decision variables of the problem, typically utilizing both equalities and

inequalities. Here, the choice of decision variables becomes critical: well-planned decision

variables usually lead to straightforward constraints.

Sometimes in the course of creating constraints it is convenient to introduce a "new"

(intermediate) decision variable; this is perfectly valid within linear programming, although

it may tend to make the problem more complex. An example of this are the "slack" and

"surplus" variables used in converting a linear program to standard form; these are

described later.

With the introduction of the constraint set, a little terminology is in order. Any set of values

for the decision variables that satisfies all of the constraints is known as a feasible point or

feasible solution of the linear program. One can think of each decision variable as a

component of a vector in nspace (if there are n decision variables). The feasible region of

the linear program, then, is the set of all feasible solutions.

Objective Function

Solving an optimization problem requires an expression which to optimize; this is the

objective function. In linear programming, one is always searching for the minimum or

maximum value of the objective function, which is expressed as a linear sum of the decision

variables, each with its own coefficient. The coefficient of each decision variable in the

objective function is referred to as the cost coefficient or just the cost of the variable.

It is perfectly valid for the objective function to contain less than all the decision variables;

those variables not appearing in the objective function have a cost of zero (and are thus

"insignificant" in terms of the final solution).

With these terms defined, it is simple to see that the optimal solution to the linear program

one or more feasible points that have the best (maximum or minimum) value of the

objective function. The details of this solution will be described later.

An Introductory Example

It is difficult to grasp the immediate concepts of linear programming without a direct

example; thus, here is a rather simple introduction to the creation of a linear programming

(LP) formulation from a problem:

12
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Theproductionmanagerat aplantis overseeingtheproductionof twochemicals,A andB.
Theproductionfor each100gallonsof thesetwo chemicalsdependson two processes(1
and2), asfollows:

Product Time in Process1 Time in Process2

A 2 hr. 4 hr.
B 3 hr. 5 hr.

Thetotal timesavailableperweekare16hr. for Process1 and24hr. for process2.

The managerwishesto determinetheoptimalschedulesoasto maximizetotal revenues,
giventhefollowing profit schedule:

Product Profit per 100Gallons
A $ 40
B $100

The solutionof theproblembeginswith the identificationof thethreebasiccomponents
listedabove.First, thedecisionvariablesmustbechosen.It isclearthatthemanagerwishes
to "decide"upontheproductionquantitiesof thetwo chemicalsA andB. Thuswedefine
thetwo principle (andonly) decisionvariablesof theproblemto be:

Xa = Quantityof ChemicalA to produceperweek
Xb = Quantityof ChemicalB to produceper week

Theunitsfor Xa andXb shouldbechosenas"100gallons/week",sincetheproblemisstated
all in termsof hundredsof gallons.In general,it is goodpracticeto "scale" theproblemin
anypossibleway soasto maintainnumericalaccuracy.

With thedecisionvariableschosen,theconstraints(expressedin verbal form within the
problem)cannowbeconvertedtomathematicalexpressions.Thetimein thetwoprocesses
(in hours)to produce100gallonsis given,alongwith amaximumlimit onprocesshours.
Thinking in termsof this limit, then,onecanexpressthe limits uponthe hoursusedin
Process1andProcess2 asthe following inequalities:

2 Xa + 3 Xb < 16

4 Xa + 5 Xb < 24

The inequalities signify that it is perfectly valid (within this model, at least) to use less than

the maximum time available. Here we are imposing a limit on process hours, but the limit is

(and must be) written in terms of the decision variables.

13



As it happens,thesearetheonly constraintsin theoriginalproblem,sothatall thatremains
is to write the objective function. We wish to expressthe profit of the productionof
chemicalsA andB, andthenmaximizeit. Quitesimplythen,theobjectivefunctionfor the
problemis:

MAXIMIZE 40 Xa + 100Xb

Linear Program "Standard Form"

This completes the linear program formulation. In most cases the LP should be expressed in

"standard form." Simply put, this means that the objective function must be expressed first,

and that all constraints be placed in the following form:

alX1 + a2X2 + a3X3 + ... ("<" or ">" or "=") b

where b is the "right-hand side" of the constraint, and must be a positive quantity. "b" can

be made positive if necessary by multiplying the entire constraint expression by "-1" (and

reversing the sign, if it is an inequality). Notice also that all variables must be on the

left-hand side of the expression.

Also part of standard form is the "nonnegativity" of all variables. This is not something that

must be expressed, but something that is assumed by almost all linear program solvers

(including ALPS). Every decision variable is assumed to have a positive value.

Alternately, it can be viewed that the constraints "Xa _>0", "Xb > 0" (so on for each variable)

are implicit within the problem. How does one use variables that can take on positive and

negative values, then? These so-called "free" variables can be rewritten as the difference

between two nonnegative variables. The procedure for this would be to write the LP as if all

variables were free, and then substitute a difference of two new variables everywhere the

free variable(s) occur. For example, if the variable "Xb" above were to become a free

variable, one would substitute "Xbl - Xb2" for "Xb" (within both the constraint set and the

objective function -- don't forget to multiply out any coefficients). When the LP is solved,

the optimal value of"Xb" can be found by subtracting the optimal values of"Xbl - Xb2".

In physical systems, however, negative quantities are not often valid, and thus the

nonnegativity assumptions of linear programming are useful.

14



Slacks and Surpluses

The straight-line definition of "standard form" for a linear program also requires that all

constraints actually be of the form

alxl + a2x2 + a3x3 + ... = bl

that is, all constraints be expressed as an equality. Although ALPS (and most other linear

program solvers) do not require that the LP be converted to this form, it is somewhat useful

to know how this is done. The technique used is the addition of slack and surplus variables.

First, take the case of a constraint of the form "alX1 + a2X2 + a3X3 + ... < b". Notice that an

additional, positive value can be added to the left-hand side of the equation. If this value is

the value of the difference between the sum "alX1 + a2X2 + a3X3 +..." and the right-hand

constant"b" then the inequality becomes an equality. Thus we have converted the equation.

In the case of a variable, we simply place a slack variable "Xs" on the left-hand side to

form:

alX1 + a2X2 + a3X3 + ... + Xs = b

Note that we require "Xs" to be positive; this is already implicit in the nonnegativity of

"Xs."

Surplus variable represent the same concept as a slack variable, but for ">" constraints:

instead of adding the surplus onto the right-hand side, however, we subtract it. Thus any

equation with a ">" in it automatically becomes an equality. Again, the nonnegativity of the

surplus variable is required and implied.

Once slack and surplus variables are added into the problem, they are implicitly given

coefficients of zero in the objective function. This makes sense: the optimal solution of the

problem should not depend upon any slack or surplus, since they have no actual bearing on

the problem. As mentioned above, variables can be created at will. Although it would serve

no purpose, one could create two or more slacks within a given constraint.

One point that has been subtly "glazed over" up until now is the distinction between "<" and

"<" constraints (or ">" and ">"). Mathematically, the expression "X < 3" and "X ___3" are

quite different. In linear programming, only constraints of the form "X < 7" are actually

valid. This is due to the nature of any problem itself; one cannot constrain "X" to be

"infinitely close" to, but never exactly, 3. For convenience then, ALPS allows constraints to

be written as "X < 3" (a strict inequality); this is assumed to mean "X _<3" (a nonstrict

inequality).

That is basically all the necessary information needed to formulate a simple linear program.

Creating an LP from a problem scenario is a technique which, with practice, becomes

easier. A few other "tricks" are mentioned here; these are useful only to those with some

experience in linear programming, but are mentioned as a start:
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CertainLP solvers(suchasALPS)allow theuseof integer variables in the formulation. As

the name implies, an integer variable can only take on integer values. Although this really

creates no additional work in terms of creating an LP, integer programs sometimes require

special treatment of the constraints. For example, if"Xa" and "Xb" are integer variables, the
constraint

Xa + Xb _<6.5

is somewhat wasteful in terms of the solution process. Integer programs use a different,

much lengthier technique for solution than plain linear programs, and as such the

programmer should be as efficient as possible (that is, attempt to use as few variables as

possible) within the formulation.

In many cases the use of binary variables is of interest. A binary variable is a special case of

the integer variable, one which can only assume the values 0 and 1. Often these variables

represent a "go"f'no go" situation in the decision. Also, creating the constraints in a binary

program is often tricky. In solving a problem, ALPS treats binary variables the same as

integer variables. However, if a problem contains strictly binary variables, ALPS uses a

much faster, more efficient technique to solve it.

By combining binary variable with a standard linear program, the user has a large set of new

capabilities within the program. First of all, piecewise-linear objective functions can be

modeled (functions that are linear with different slopes over several regions). Also, one can

include conditional constraints such as "IF X1 + X2 > 2 THEN X3 < 4." These are advanced

topics in linear programming; for more information, see a full LP text.

Solution Reports

Regardless of how the LP was formed, once it is solved, the solution data can be of great

value. Several new terms come into play once an LP solution is considered; to facilitate this

we shall examine the ALPS solution to the mixing process created above:

ALPS: Linear Program Solution

**** Solution # 1 of 1 ****

*** LP SOLVED WITH OPTIMAL VALUE OF 480.0 ***

Variable Optimal Value Reduced Costs

Xa 0.0 40.0

Xb 4.8
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Row ConstraintName ,, _Slack/Surplus ShadowCost
1 "_ 1.6

2 0.0 20.0

*** RANGES IN WHICH CURRENT SOLUTION WILL NOT CHANGE ***

Variable

Ranges on Objective Function Coefficients:

Current Cost Max Increase Max Decrease

Xa 40.0 40.0 INFINITY

Xb 100.0 INFINITY 50.0

Ranges on Right-Hand Side (RHS) Values:

Row Constraint Name Current RHS Max Increase Max Decrease

1 16.0 INFINITY 1.6

2 24.0 2.66667 24.0

Note that ALPS gives the Optimal Value of all the decision variables. These values (Xa = 0

and Xb = 4.8) taken together comprise an optimal solution to the linear program. In this

case, there is only one optimal solution, known as a unique optimum; however, some

problems may produce several, or "multiple" optima. The other solutions are known as

alternate optimal solutions.

Associated with these optimal values is the overall optimal value of the objective function.

This is just the sum of the objective function coefficients (defined above) times the optimal

value of all the decision variables. In the case of a minimization problem, this is the lowest

possible value of the objective function within the given constraints; for a maximization it is

the highest possible value.

The solution to this particular LP is rather trivial. With a little thought one can see that, since

chemical B has a much higher profit margin than chemical A, the manager really has no

reason to produce any amount of chemical A. Then, with all production turned to B, the

amount of B "Xb" to produce can be maximized until no hours of process 2 remain, so that

24/5, or 4.8, units of 100 gallons should be produced. However, for discussion purposes, we

will continue to analyze the solution.

Along with the optimal values, the solution contains the reduced costs of each decision

variable. Understanding these costs requires a bit of knowledge as to how a linear program

is solved.

Consider a linear program where there are n variables (after the addition of slack and

surplus variables, so that all constraint equations are equalities) and m constraints.

Immediately, m must be less than or equal to n, or else the constraints will overqualify the

system of equations. Now, we consider each feasible point of the system described by the
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equations.Somesimplelinearalgebradictatesthat,of thenvariables,exactlym-n of them
mustbeidenticallyzero.Theseareknownasthenonbasic variables of a solution; the other

m variables are known as the basic variables and, take as a whole comprise the basis of any

given solution.

Finding the optimal point(s) of a linear program then reduces to searching through different

bases until the best solution is found. This is not done in any haphazard manner, however.

Once a feasible solution (described by a basis) is found, a new one is generated by making a

certain nonbasic variable (with a zero value) into a basic variable. Of course, this also

requires a basic variable to be transformed into a nonbasic variable. (This procedure is

known as apivot or change of basis.) Associated with this change is a change in the overall

objective function value. The choice of which variable "leaves" the basis and which

variable "enters" the basis is made so that the objective function is sure to improve. An

optimal solution is found when the objective function can no longer be improved by

pivoting.

At any given point in the solution process, every nonbasic variable has an associated

reduced cost (also known as an opportunity cost). This relates to the actual numeric change

in the objective function if that variable were to enter the basis. Specifically, it is the

increase in the objective function value (or decrease, if the reduced cost is negative) for each

unit increase of the decision variable. For that reason, all reduced costs in the final solution

of a MAX problem will be negative (indicating that no increases are possible) and all will be

positive for a minimization problem. Also, since basic variables are already in the basis, any

basic variable (a variable with a nonzero optimal value) will have a zero reduced cost.

The values of the reduced costs in the final solution are sometimes useful for interpreting

which decision variables are least significant to the problem. For example, when multiple

nonbasic variables exist in the final solution of a MAX problem, the one with the least

negative reduced cost will have the least affect (per unit variation) on the optimal value.

This is part of the broader field of linear programming known as sensitivity analysis.

In the above problem the decision variable "Xa" is nonbasic (since it has zero as an optimal

value) and has a reduced cost of-40.0, indicating that for each unit (remember that here, a

"unit" is 100 gallons) that "Xa" were to be increased, the optimal objective value would

decrease by (that is, the manager would lose profits of) $40.

The solution output also contains information relating to each equation of the constraint set.

(ALPS allows the naming of constraints, for easy reference). The slack or surplus of the

constraint (if it exists) is given. If the constraint is an equality, it obviously has no slack or

surplus. Likewise, if the user has already converted the problem to standard form, ALPS

has now way of knowing, and will report no slack or surplus.

An inequality constraint with no slack or surplus is referred to as a tight or binding

constraint. Often, this means that the constraint is being used to its full capacity, such as the
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constraintonProcess2,above.All hoursofProcess2arebeingusedin thecurrentsolution.
However,Process1is slackby 1.6units,indicatingthatProcess1has1.6hoursof idle time
in its cycle.

A very useful quantity in terms of sensitivity is the shadow cost of each constraint.

Basically, this is the "opportunity cost" of the constraint value. This is best explained by

example: in the above problem, the shadow cost related to the constraint on Process 2 is 20.

This means that for every increase in the fight hand side of the constraint, the objective

function will increase by $20. Thus, if the manager could allocate just one more hour of

Process 2 time per day, the profit would increase by $20. This shadow cost if very useful

when many constraints exist; the solution then indicates (via the shadow cost) which

constraints are more critical to the solution.

Another term for the shadow cost is the dual cost. This is the same entity; another realm of

linear programming, duality theory, deals with the so-called "dual" of every linear

program. In the dual problem, constraints become decision variables, and decision variables

become constraints. Thus the "shadow cost" described above is actually the "opportunity

cost" or "reduced cost" for each constraint.

It should be noted that the shadow costs and reduced costs are not always meaningful for

every LP. Their usefulness depends largely upon how the LP was formulated. For

production-type problems, the dual costs can be very helpful. But for other problems (e.g.,

binary programs and integers programs), the dual solution is basically useless.

One final set of information produced by ALPS is the parametric analysis of the problem.

This analysis studies the changes possible within the formulation. First, notice the ranges

(given as "Max Increase" and "Max Decrease") on the objective function coefficients.

These numbers denote the range for each coefficient within which the optimal basis will not

change. That is, as long as the objective costs stay within these limits, the optimal values of

the decision variables will not change. Note that _ change in the objective costs will,

however, cause a change in the optimal objective function value (since the coefficients have

changed, directly affecting the objective value).

Ranges are also given on the right-hand side values of each constraint equation. As long as

each fight-hand side constant stays within these limits, neither the objective function value

nor the optimal value of the decision variables will change. The only quantities that might

vary are the values of the slacks and surpluses for the constraints; this is expected since the

right hand side values are changing.

The ranges on the objective function coefficients and constraint right-hand sides are quite

useful when the LP is used to model a physical system when the parameters are slightly

uncertain. As long as the possible ranges for the parameters stays within the prescribed

limits, there is no need to re-solve the linear program. However, if _ny 0he parameter

should change outside the allowed ranges, the final solution is guaranteed not to be the same

as before.
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In theexampleabove,examinetherangeon thefirst (Process1)constraint.Notice thatit
maybeincreasedbyaninfinite amount,withoutchangingtheoptimalsolution.At first, this
mayseemcounter-intuitive;however,rememberfrom thediscussionabovethatProcess1
isnotevenbeingusedto full capacity(it hasaslack).Process2 is thelimiting factoron the
solution.

Impossible Problems

Of course, all the above information on solutions is helpful only if the linear program can be

solved in the first place. Why would an LP be un-solvable? There are three possibilities;

each will be presented here.

Perhaps the most common non-solution is that the LP is infeasible. Informally, this means

there is no set of decision variables that satisfies all the constraints at one time. Formally,

this means that the feasible set is empty. In any case, this is most likely a formulation error.

The LP probably contains too many constraints, or malformed constraints. The only

solution is to check the problem. Otherwise, the infeasible LP means that there actually is

no solution.

Typically an LP that is unbounded also represents a formulation error. In this case, one or

more of the decision variables would be allowed to take an infinite value, thus causing an

objective function value of positive infinity (for a MAX) or negative infinity (for a MIN).

Here the LP is underconstrained, and should be checked.

One final dreadful problem may cause an LP to terminate abnormally. If the LP is found to

cycle (or diverge), this means that the iterative method used to solve the linear program has

failed. This is determined when the solution takes more than a prescribed number of

iterations. Unfortunately, there is no particular way to avoid this problem; the user can only

"fiddle" with the various coefficients until the problem can be solved. On the upside, this

type of problem has only been known to occur in two or three of the multitudes of types of

linear programs, so it is not much to worry about.

Believe it or not, you have just completed a crash course in linear optimization. The

guidelines above give a general outline of practically all the terms and concepts that appear

in a linear programming text. With that in mind, anyone with any serious interest in

formulating and solving LP's should consult such a text for a thorough discussion of linear

programming.

Another Production Planning Problem:

The only practical way to improve upon linear programming knowledge is, as in many

fields, with practice. Below is an example problem, along with a "walk-through"

formulation.
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A furnituremakerwishesto determinehowmany tables,chairs,desks,andbookcaseshe
shouldmake in order to optimizehis availableresources. Theseproductsutilize two
different typesof lumber,andhehason hand1,500board-feetof thefirst typeand1,000
board-feetof thesecond.Hehas800man-hoursavailablefor thetotaljob. Otherpertinent
information is asfollows:

ProductType Board-Ft of Board-Ft of Man-Hours Unit Profit
Lumber#1 Lumber#2 Needed
Table 5 2 3 $12
Chair 1 3 2 $ 5
Desk 9 4 5 $15
Bookcase 12 1 10 $10

Thecraftsmanalsohasasalesforecastandbackorderswhichrequirehim to makeatleast40
tables,130 chairs,and 30desks;aswell asno more than 10bookcases.Determinethe
optimalproductionschedulesoasto maximizeoverall profit.

Solution:

This problem is quite similar to theproductionproblempresentedearlier,althoughit is
more complex. First, we determinethe decisionvariablesnecessary. This is almost
intuitive:

Xt = Total numberof tablesto produce
Xc = Total numberof chairsto produce
Xd = Total numberof desksto produce
Xb = Total numberof bookcasesto produce

Therearethree"resources"whichmustbeconstrained- board-ft of lumber#1,board-ft of
lumber#2,andtotalman-hrs.Hereagainweexpressthetotalnumberof board-ft of lumber
#1 in termsof thenumberof eachitemproduced,andthenconstrainit to be lessthan (or
equalto) the total numberof board-ft available:

5Xt+ Xc+9Xd+12Xb <1500

The constraints for lumber #2 and man-hrs are similar:

2Xt+3Xc+4Xd+ Xb<1000

3 Xt + 2 Xc + 5 Xd + 10 Xb <_800
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Therearealsoconstraintson theminimumnumberof tables,chairs,anddesks,aswell asa
maximumlimit on thenumberof bookcases:

Xt > 40

Xc > 130

Xd > 30

Xb< 10

Finally, all that remains is to create the objective function. Since the furniture maker wishes

to maximize profit, we simply use the unit profits of each item as the objective function

coefficients:

MAX 12Xt+ 5Xc+15Xd+10Xb

This completes the linear programming formulation. The reader should enter and solve this

LP as an exercise, and interpret the results, using the following questions as a guide:

If the furniture maker could buy an additional 10 board-feet of either type of lumber, or 10

man-hours (all for the same cost), which one should he invest in to give the biggest increase

in profit (hint: shadow costs)?

Suppose the craftsman discovers that his estimate on his profits for chairs is incorrect. How

"wrong" can he be (that is, what range) before he has to re-solve the problem? What if he

discovers an additional 100 board-feet of lumber #1?

It should be noted that, even though one cannot build "3.2 chairs," the above problem was

formulated as a pure linear (not integer) program. In general, it is wrong to simply "round

off" the answer to a linear program to obtain an integer solution. There is no guarantee that

the rounded answer is still optimal (or even feasible!) However, in this problem, the order

of the decision variables is about 100, which is greater than most of the coefficients in the

problem, so that rounding is not too bad of an answer. If an exact answer is required,

however, all the decision variables should be declared as "integer" variables.

A Binary Program: The "Stage Coach" Problem

To show the usefulness of a 0-1 integer ("binary") program, the following example is

presented:
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4 2

A B C D E

Figure B1 "Map" of Possible Routes Between Five Towns

Figure B 1represents a "map" of the possible routes between five towns. Town "A" has one

station (number 1), town "B" has three stations (number 2, 3, and 4), and so on. A route is to

be found for a stage coach that must travel from town "A" to town "E", with the smallest

possible distance. (The number beside each path represents the distance of that path in

miles). The stage coach must travel through one station in each town. Determine the

optimal (shortest route length) path.

Solution:

The key to this problem is the choice of decision variables. One could choose a single

variable "D" as the total distance traveled, create many complex constraints relating to the

paths, and then simply minimize "D"; however, this approach would give no information on

the actual path to take. A more "observable" approach is to create a binary variable for each

path; then let the variable be "1" if the path is taken, and "0" if the path is not taken. Thus we

define all the decision variables (the prefix "B" on each variable is an indicator to ALPS the

the variable is binary):

23



BX12 = 1 if thepathfrom station1to station2 is taken,0 if it is not;

BX13 = 1 if thepathfrom station1to station3 is taken,0 if it is not;

000

BX1011 = 1 if the path from station 10 to station 11 is taken, 0 if it is not.

(There are 20 decision variables in all).

The constraints in this problem are implied; there is no explicit statement pertaining to each

decision variable. What we must do is ensure that one and only one route (made up of a set

of paths) is chosen. To do this, one can visualize starting from the first station (#1), and

moving forward. We note that, from the first station, one and only one path can branch out.

Thus we obtain the fu'st constraint:

BX12 + BX13 + BX14 = 1

In formulating binary programs, it is often helpful to resolve the constraints into simple

logical rules, such as "if XX then YY." Once the rules have been defined, it is usually a

simple matter to express them in terms of the binary variables. For this stage coach

problem, we can use one simple rule to create all the remaining constraints: If a path travels

into a station, it must also travel out. The first constraint above ensures that only one path

will leave the first node, so there is no chance of more than one route existing at any time.

Thus the mathematical expression of the rule above is, for any station n:

BXaln + BXa2n + BXa3n + ... = BXbln + BXb2n + BXb3n + ...

where al, a2, a3 .... are the station numbers with paths leading into station n and bl, b2, b3 ....

are the stations numbers with paths leading from station n. For example, for station #2, the

rule can be expressed as:

BX12 = BX25 + BX26

Converting this expression into standard form by moving all variables to the left-hand side

gives:

BX12 - BX25 - BX26 = 0
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The entire program formulation follows below. In order to get a better feel for this
formulation,refer to thediagramabovewith eachconstraint.

BX12 + BX13 +BX14 = 1
BX12 -BX25 -BX26 = 0
BX13 -BX35 -BX36 -BX37 = 0
BX14 -BX46 -BX47 = 0
BX25 +BX35 -BX58 -BX59 = 0
BX26 +BX36 +BX46 -BX68 -BX69 -BX610 = 0
BX37 +BX47 -BX79 -BX710 = 0
BX58 + BX68 - BX811 = 0
BX59 +BX69 +BX79 -BX911 = 0
BX610 + BX710 - BX1011 = 0
BX811 +BX911 +BX1011 = 1

Noticethatthe lastconstraint,similar to thefirst, statesthatonly onepathcanleadinto the
laststation(#11). Actually, thisconstraintisnotneeded-- canyouexplain(in termsof the
logic of the constraints)why this is so?

Conclusion

This Appendix has covered the most basic concepts of linear programming, formulating a

problem and interpreting the results. It is hoped that the reader will pursue a complete

discussion of the merits and use of linear programming, perhaps from the list below. As

mentioned before, linear programming is a skill, and can only be mastered with practice.

Once mastered, it can be a powerful analytical tool.

25



Appendix C: Programmer's Guide

1.0. Introduction

This appendix is intended as a guide for those who wish to maintain, expand, port, or

otherwise modify the ALPS code. The ALPS code is quite large, and no one (even the

original author) could be expected to maintain it without some sort of"roadmap" to the 50+

functions which comprise it. Unfortunately, the author maintains this roadmap mentaily;

others will be at a distinct disadvantage. However, this guide is intended to make the task of

changing ALPS as smooth as possible.

The guide is centered around the six major groups of functions in ALPS. In order of

increasing complexity, they are: menus, output routines, formatting functions, file

functions, parsing routines, and, the core of ALPS, LP-related functions. Each section of

this guide describes each function in various detail: those functions which are quite simple

will have little discussion, while those that perform complex tasks will be given a more

verbose description. Since the ALPS code contains comments on almost every line, do not

look here for explicit references as to which variable is modified, etc. Rather, use these

descriptions to get an overall idea what a function does, and how it does it. Then refer to

code comments for the details.

ALPS is written in and based upon IBM's APL2/PC product. As such, the programmer will

most definitely need a solid APL background. Also, experience in linear programming will

be necessary in most cases, although the more superficial functions will not require much

LP expertise. However, those attempting to modify any of the simplex method,

branch-and-bound, or implicit enumeration code will need experience in these areas.

ALPS also relies heavily upon the "AP124" screen Auxiliary Processor; the reader may

wish to examine the APL2/PC User's Guide to become familiar with this interface.

2.0. Menu Functions

The menu functions comprise the menu hierarchy of ALPS. In most cases, they simply

place the menu on the screen, wait for an input key, and then call the proper submenu or

problem-related function, or display an error for an invalid key.

ALPS

This is the top-level function for the ALPS program. Here, the global variables and

constants are initialized and the initial screen functions are set up. ALPS calls INTROSC to

display the initial menu. From here, any of the submenus FILESC, INTROSC,

SOLUTION, and FILEFUNC will be called.

FILEFUNC

All file operations are handled through this menu. Some checks are done before reading a

file to make sure the user wants to lose an unwritten problem formulation.
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FILESC

This is thefunction that displaysthefile optionson the screen.

INTROSC

This is the actualintroductorymenufor ALPS. It displaysthe menuitemsonscreen.

SOLUTION

This menu displays optionsrelating to solving the linear programand displaying the
solutiondata. It checksto makesuretheproblemis actuallysolved.

SOLVESC

Displays the file options on the screen.

3.0. Output Functions

These functions in some way place output data on the screen (or some other device, in some

cases). Typically they are called from the menu functions, and in turn call some of the

formatting functions described later.

DEFINESCREENS

This function calls all of the screen-definitions functions for ALPS. All of the screen

manipulations in ALPS utilize the "AP124" Auxiliary Processor. See the APL2/PC User's

Guide for more information on AP124.

DISPRANGE

This function displays, through the PAGEOUT function, the solution data on optimal

ranges for the LP. It uses FORMRANGE to format the output.

DISPSOLUTION

Like DISPRANGE, this function formats the solution data into a text array using

FORMRANGE and then displays it to the screen using PAGEOUT.

OVERSC

The "overview" for ALPS is really just a text matrix. This function places the overview text

on the screen and allows the user to scroll it around.

PAGEOUT

This function takes any text matrix and displays it to the output screen. It allows the user,

via the cursor and paging keys, to scroll around the length and width of the text matrix. It is

used by several of the solution output functions.

PRINTREPORT

When the user requests a solution report, this function creates a text matrix of the solution

data from FORMSOLUTION and FORMRANGE. It then outputs the text to either a file or

a device, using the file function WRITEMATRIX.
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SCREEN5

This is actually an input/output screen, which displays a text matrix and inputs a line of text.

It is used mainly by the file functions to request a filename from the user.

WRITEOUT

This is an auxiliary function used to output data to a field on the screen. It is actually called

by some of the LP-solving functions, to dynamically display data.

DISP_MSG The "message area" is a field on the bottom line of the display screen. This

function writes a given string to the message field, and has options to beep and/or pause. It

is called by numerous other functions.

GETPROB

This function is actually a self-contained text editor. It is used to allow the user to enter an

LP formulation. Several features are included, such as inserting and deleting lines, moving

by line or by page, etc. The basic text is stored in a matrix, and most of the function is

concerned with display the proper portion of the data, and manipulating the display screen

(through the AP124 Auxiliary Processor). When the user ends the edit session, GETPROB

also calls the LP input parser to check the problem formulation. If any errors exist, it will

display the error message via SCRN111NFO and return to editing.

SCRNI1HELP

The input editor GETPROB contains a pop-up help screen, which is actually created and

displayed within this function.

SCRNIlINFO

This is an auxiliary function to the editor GETPROB. It displays a small pop-up window on

the screen, places a text message in the window, and waits for the user to strike a key.

FSBEEP, FSCLOSE, FSCOPY, FSDEF, FSFIELD, FSFORMAT, FSINKEY, FWIWRITE,

FSOPEN, FSREAD, FSSCAN, FSSETCURSOR, FSSETFI, FSSHOW, FSUSE, FSWAIT,

FSWRITE

These are the"fullscreen" functions from the AP124 workspace. They support all the screen

manipulation functions in ALPS. For more information, see the APL2/PC User's Guide.

SCRNDEFI, SCRNDEFll, SCRNDEF2, SCRNDEF4, SCRNDEF5, SCRNDEF6,

SCRNDEF8

These are screen definition functions called by DEFINESCREENS. They use the

FS-functions described above to create all the various ALPS screen formats.
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4.0. Formatting Functions

The functions in this section mainly concerned with formatting matrices (mostly text).

CTRTXT

A function used to center a string of text in a specified width.

DEXB

"Delete extraneous blanks" -- that is, remove all occurrences of multiple white spaces.

DLBC

"Delete leading blank columns" -- given a matrix of text, this function will remove any

empty (white space) columns in front.

DTBR

"Delete trailing blank rows" -- this function will strip any empty (white space) rows off a

given text matrix.

JUSTIFY, F JUSTIFY

These two functions both fill out a text matrix to a given width (right justify); FJUSTIFY

has extra features. Neither is actually called within ALPS, they were just used in

development of the help screen text and the overview text.

L JUST, R JUST

Given a string of text, these functions alternately left- and right-justify the text within a

field of a given width.

SCRN EDGE

This function is used to create a white-space edge around a text screen (matrix). Given a

matrix size and a text matrix, it will pad the edges.

TOMATRIX

Given any shape of variable for input, this function converts it into a matrix.

UPPER

This function converts a one- or two-dimensional matrix of text into all upper-case

characters.
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5.0. File Functions

The following functions deal with file I/O in ALPS. DOS files are used to read and write LP

formulations, as well as to send the problem solution report to a file (or to a device, which is

handled exactly the same as a file). These functions use the APL2 AP210 file Auxiliary
Processor.

READMATRIX

Given a valid DOS path/file, this function reads the file and returns a text matrix containing

the contents of the file. If there was some error while reading the file, a scalar error code

corresponding to an AP210 error will be returned.

WRITEMATRIX

This function writes a DOS file, given the file name and a matrix as arguments. Since

storing an entire matrix would be wasteful, this function strips the trailing blanks off each

row of the text matrix, and delimits rows with the standard DOS CR/LF sequence. The

return will always be a scalar of the status or error of the file write. One important note: the

APL/PC User's Guide states that if a file is simply overwritten, it will be replaced. This

does not seem to be the case with WRITEMATRIX -- it sometimes leaves a garbage file.

To ensure a clean rewrite, erase the file with DELETEFILE first.

DELETEFILE

Given a DOS f'dename, this function will erase the file, permanently. It is used by some of

the higher-level menu functions, only when the user has indicated that it is OK to destroy
the current file.

ISAFILE

This function simply checks for the existence of a named file. It is used to make sure a file is

not overwritten. A return scalar is the AP210 return code; a code of"2" means the file does

not exist, while "0" means the file exists.

READPROB

This is a high-level function that reads an LP formulation from disk.

WRITEPROB

This is a high-level function used to store the current formulation to disk. It handles

checking to make sure a file is not overwritten, and prompts the user to see if a file should be

overwritten.
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6.0. Parsing Functions

ALPS contains a very sophisticated text parser that reads an LP formulation and converts it

to the data structures necessary to solve the linear program. These are about the

second-most complicated functions in ALPS, and require a fair bit of knowledge of linear

programming and the revised simplex method to understand.

PARSE

This is the main parsing routine within ALPS. The entire text of the linear program is parsed

twice: the first pass collects the names of the variables and constraints, and the second pass

actually creates the LP matrices. This function calls the parsing subfunctions below after

first combining each "row" of the constraints. After all the parsing is complete, PARSE also

determines which (if any) variables are to be marked as integer or binary variables, and set

the appropriate data structures. A global variable is defined to denote whether the problem

is a pure LP, a mixed integer or integer program, or a pure binary program. Finally, it calls

STANDARD to place the linear program in standard form, ready to be solved. If any errors

occur while the LP is being parsed, PARSE will create an appropriate error message and

return.

PARSENAMES

This function is the "first-pass" of the parser. It is called once for each row in the LP,

including the objective function. It simply determines which parts of the row are variable

names, and, if the name has not been stored yet, stores the name in the global list. It also

checks the end of the line for a comment, and stores this as a "constraint name."

PARSEROW

This is the second pass of the parser. Given a row, it determines which variables are in each

row, evaluates the coefficients, and stores them in the global constraint matrix. It also

evaluates the constraint sign and right-hand side of the constraint, and stored them as well.

PARSEOF

This routine is used to parse the objective function. Like PARSEROW, it determines the

coefficients of the variables in the row and stores these as the objective function costs.

STANDARD Once the entire LP has been parsed, STANDARD is called to place the matrix

in standard form. This means adding slack and surplus variables, as well as creating two

global variables which keep track of which rows contain slack and surplus variables.

STANDARD also adds artificial variables to begin the revised simplex method. These

artificials are given a high negative cost in the objective function, so as to perform the

"big-M" revised simplex method. Also, if the problem is a MIN, STANDARD converts it

to a MAX by reversing the sign of all the objective function coefficients.
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7.0. LP Functions

The remainder of functions in ALPS deal with the actual solution of the linear program.

ALPS solves three different types of linear programs: pure linear programs, integer or

mixed integer programs, and binary programs. Each of these problems has its own solution

technique: pure linear programs are solved with the revised simplex method; integer or

mixed integer programs are solved initially with the revised simplex, and then completed

using the branch-and-bound technique; binary programs are solved with the method of

implicit enumeration, The revised simplex and branch-and-bound techniques have quite a

bit of functions in common, as the solution methods are quite alike. The implicit

enumeration routine has separate functions all its own. The type of the LP is determined in

the parsing function PARSE, and the solution menu SOLUTION calls the appropriate

solving function, SOLVELP, SOLVEIP, or SOLVEBP, as noted below.

One last note - the routines BANDB (for branch-and-bound) and IMPLICIT (for implicit

enumeration) are recursive, since they both deal with creating a solution tree. Caveat

emptor!

SOLVELP, SOLVE_,SOLVEBP

One of these routines is called (when the user calls "solve" from the solution menu) for a

linear, integer, or binary program, respectively. Each are quite similar, but deal with the

specifics of each type of LP. For plain linear programs, SOLVELP calls DOSIMP to

perform the simplex method and solve the problem. For integer programs, SOLVEIP calls

BANDB to perform the branch-and-bound technique. Finally, for binary programs,

SOLVEBP uses IEFORM to place the problem in proper form for solving via implicit

enumeration (which is quite different than the standard form for the revised simplex or

branch-and-bound techniques), and then uses IMPLICIT to solve the problem. All of the

solution routines place all the solution data in the same global variables and format, so that

other routines may successfully read the solutions.

DOSIMP

This is the heart of the revised simplex method in ALPS. It is basically one big loop, used to

iterate the simplex basis until all reduced costs are negative (remember, all problems at this

point have been converted to MAX). This function is passed three matrices describing the

simplex problem, and returns the same three matrices in solved form. It uses FINDBV to

find the initial basic variables from the constraint matrix. Whenever a pivot operation in the

basis is needed, PIVOT is called to compute the new basis. In certain cases, if the initial LP

matrix in infeasible, DOSIMP will call DUALSIMP to perform the dual simplex method to

describe a feasible problem (this is necessary only during the branch-and-bound procedure,

which calls DOSIMP to do the simplex work). Once a solution is found, GETSOLUTION

is called to store the solution globally, and GETALTERNATES is called to find any

alternate optimal points. FINDBV This is an auxiliary function to DOSIMP. Its job is to
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find whichvariablesin thegivensimplexconstraintmatrix arebasic. For eachrow in the
constraintmatrix, therewill be exactly one basic variable. FINDBV determinesthis
variablefor eachrow, assumingall thetime thatthe matrix is in standardform.

PIVOT

Whenthe simplexmethodis to pivot (that is, switchanenteringanda leavingvariable),
PIVOT is calledandpassedtheindexof theenteringvariable. It thenglobally accesses
othersimplexvariablesanddeterminesthe leavingvariable. From this, it computesthe
product form for the next basis. A few global variablesareupdated,and the pivot is
complete. PIVOT alsotakescareof displayingon-screenthecurrentpivot operation,for
the statusscreenin SOLVELP.

DUALSIMP

If DOSIMP has been called by BANDB, it is possible that, after adding constraints to the

matrix, the current LP will be infeasible. In this case, DOSIMP will call DUALSIMP to

perform the dual simplex method and retum the LP to a feasible basis. This is the same type

of iteration as used in DOSIMP, but the dual simplex criterion for pivoting is used, and

DUALPIVOT is used to perform the pivot operation.

DUALPIVOT

As described above, this routine is used in the dual simplex method to perform pivots.

However, unlike PIVOT, DUALPIVOT determines both the entering and leaving variables.

GETALTERNATES

Once the LP has been solved (via DOSIMP), this routine is called to perform any additional

pivots to find alternate solutions (from nonbasic variables with zero reduced costs).

GETSOLUTION

If an LP solution has been found, this routine is called to store all the data relevant to the

current solution into global variables. This includes calculation of the optimal ranges,

shadow costs, slacks and surpluses, etc.

BANDB

This is the main recursive solver for the branch-and-bound technique. Given a current LP,

it solves it, and then performs detection of a branching variable. When a branch is

performed, the routines ADDUPBOUND and ADDLOBOUND are called to add the

bounding constraints on the simplex matrix. BANDB then calls itself to solve the left and

right branches of the tree, or exits if the node it is currently evaluating is to be fathomed.

ADDUPBOUND, ADDLOBOUND

These routines are passed an LP formulation in matrix form, and a variable index and bound

to add. They simply add a row to the constraint matrix corresponding to the requested
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bound. A new LP formulation is returned. Note that this formulation may initially be
infeasible,thusrequiringthedualsimplexmethodto solveit.

IEFORM

If the problem to be solved is a pure binary program, SOLVEBP will first call this function

to convert the problem formulation into the required form for implicit enumeration -- that

is, the problem must be a max, with all objective function coefficients negative. Variables

are substituted as "1 - X" for "X", and a note of which variables were changed is noted for

the final solution. The problem is then ready to be solved via implicit enumeration.

IMPLICIT

This is the main recursive implicit enumeration algorithm. A branching variable is chosen

using the "least-total-infeasibilities" criterion, by calling DEGINFEAS to determine the

degree of infeasibility of each variable. The two branches (fixing the variable at "0" or "1")

are created using the FIXVAR routine. Any possible zero completions are stored;

otherwise, the branches are evaluated recursively.

DEGINFEAS

Given a variable index, this routine returns the "degree of infeasibility" of the variable in the

current implicit formulation. It is used solely to determine a branching variable.

FIXVAR

When IMPLICIT determines a variable to fix, it calls FIXVAR to determine the new

implicit formulation. This routine is very memory-conscious -- the new formulation

actually removes the variable entirely, thus reducing the size of the formulation. This is

very useful within the recursive structure of the implicit enumeration solution technique.

ISFEASIBLE

This function determines if the given implicit enumeration formulation is feasible -- it is

used by IMPLICIT to determine if the node should be fathomed (if the zero completion is

feasible) or not.
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8.0. Global Variables

Much information about ALPS is contained within the structure of its variables. Certainly

the belief that "data structures arc the key element to a program" is no more true than in

APL2. Examining how these variables are referenced can lead to a lot of insight of the

programming of ALPS.

Below is a list of all the key variables within ALPS. Unless otherwise noted, these are

global variables. The rank and shape will be noted, where appropriate.

A, b, c

These variables completely determine the original simplex problem. They represent,

respectively, the simplex constraint matrix (a matrix), the constraint right-hand sides (a

vector), and the original objective function coefficients (a vector). This is the f'Lrstsimplex

problem in standard form; that is, all slacks and surpluses have been added.

SLACK, SURPLUS, ARTY

These variables are used to determine which variables represent the slack, surplus, and

artificial variables of the LP formulation, since the problem has already been converted to

standard form. Each is a vector, their length being the number of rows in the constraint

matrix A. The element corresponding to any given row is, for example, in SLACK, the

index of the slack variable in that row. If no slack exists in a row, the corresponding element

of SLACK will be zero. The format for SURPLUS and ARTY is the same.

PRIMAL, DUAL

These variables are used to store the solution(s), when they are found. They are each

matrices, with each row corresponding to a different solution. The first dimension of

PRIMAL is the number of variables (since the primal solution represents the values of the

variables), while DUAL has the "width" of the number of rows in A, since the dual solution

corresponds to rows.

ZVALS

For each row in PRIMAL, there is an element in the vector ZVALS which is the optimal

objective function value for the corresponding solution in PRIMAL. This is used within the

branch-and-bound and implicit enumeration routines to keep track of all the solutions.

RCOSTS, c_INC, c_DEC, b_INC, b_DEC

These are more variables representing the optimal ranges of any solution. Like PRIMAL,

they have a row for each solution.

LP

This is a text matrix, at all times containing the current LP formulation from the editor. In a

few cases, the variable LP2 is used as a temporary holding place for this variable.
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NAMES, CNAMES

These variables contain the names of the variables and constraints in the LP formulation.

They both take the form of a nested array, with each element being a text vector.

DIRTY, CHANGE, LPSOLVED

Each of these variables is a boolean, representing one of the following states: DIRTY is "1"

if the current LP formulation has not been saved to disk yet. CHANGE indicates that,

usually within the editor, the text of the LP has been changed. LPSOLVED is set to "1"

when the linear program currently in LP has been solved, and is reset to "0" whenever the

formulation changes.

zero, infinity

These are actually "constants" that are used in the mathematical calculations of the simplex

method.

ZT

This is the internal "zero--tolerance" of ALPS. Any number with a smaller magnitude that

_ZT is considered to be zero. Larger problems may have to have this value adjusted.

scrn, helpn

These are nested arrays containing the text of the ALPS display screens and help screen.

They are referenced by number within several of the display functions.

bigm

This is a "constant" used in the big-M simplex iterations. All artificial variables are given

the value of bigm as an objective function cost.

maxiter

This constant determines how many simplex iterations are carried out before ALPS declares

that the given LP is cycling.
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